Course Outline

Introduction

Overview of Azure Machine Learning (AML) Features and Architecture

Overview of an End-to-End Workflow in AML (Azure Machine Learning Pipelines)

Provisioning Virtual Machines in the Cloud

Scaling Considerations (CPUs, GPUs, and FPGAs)

Navigating Azure Machine Learning Studio

Preparing Data

Building a Model

Training and Testing a Model

Registering a Trained Model

Building a Model Image

Deploying a Model

Monitoring a Model in Production

Troubleshooting

Summary and Conclusion

Requirements

  • An understanding of machine learning concepts.
  • Knowledge of cloud computing concepts.
  • A general understanding of containers (Docker) and orchestration (Kubernetes).
  • Python or R programming experience is helpful.
  • Experience working with a command line.

Audience

  • Data science engineers
  • DevOps engineers interested in machine learning model deployment
  • Infrastructure engineers interesting in machine learning model deployment
  • Software engineers wishing to automate the integration and deployment of machine learning features with their application
 21 Hours

Delivery Options

Private Group Training

Our identity is rooted in delivering exactly what our clients need.

  • Pre-course call with your trainer
  • Customisation of the learning experience to achieve your goals -
    • Bespoke outlines
    • Practical hands-on exercises containing data / scenarios recognisable to the learners
  • Training scheduled on a date of your choice
  • Delivered online, onsite/classroom or hybrid by experts sharing real world experience

Private Group Prices RRP from €6840 online delivery, based on a group of 2 delegates, €2160 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.

Contact us for an exact quote and to hear our latest promotions


Public Training

Please see our public courses

Testimonials (2)

Provisional Upcoming Courses (Contact Us For More Information)

Related Categories