Course Outline
Introduction
Overview of Azure Machine Learning (AML) Features and Architecture
Overview of an End-to-End Workflow in AML (Azure Machine Learning Pipelines)
Provisioning Virtual Machines in the Cloud
Scaling Considerations (CPUs, GPUs, and FPGAs)
Navigating Azure Machine Learning Studio
Preparing Data
Building a Model
Training and Testing a Model
Registering a Trained Model
Building a Model Image
Deploying a Model
Monitoring a Model in Production
Troubleshooting
Summary and Conclusion
Requirements
- An understanding of machine learning concepts.
- Knowledge of cloud computing concepts.
- A general understanding of containers (Docker) and orchestration (Kubernetes).
- Python or R programming experience is helpful.
- Experience working with a command line.
Audience
- Data science engineers
- DevOps engineers interested in machine learning model deployment
- Infrastructure engineers interesting in machine learning model deployment
- Software engineers wishing to automate the integration and deployment of machine learning features with their application
Delivery Options
Private Group Training
Our identity is rooted in delivering exactly what our clients need.
- Pre-course call with your trainer
- Customisation of the learning experience to achieve your goals -
- Bespoke outlines
- Practical hands-on exercises containing data / scenarios recognisable to the learners
- Training scheduled on a date of your choice
- Delivered online, onsite/classroom or hybrid by experts sharing real world experience
Private Group Prices RRP from €6840 online delivery, based on a group of 2 delegates, €2160 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.
Contact us for an exact quote and to hear our latest promotions
Public Training
Please see our public courses
Testimonials (2)
The details and the presentation style.
Cristian Mititean - Accenture Industrial SS
Course - Azure Machine Learning (AML)
The Exercises