Course Outline
Introduction to Data Analysis and Big Data
- What Makes Big Data "Big"?
- Velocity, Volume, Variety, Veracity (VVVV)
- Limits to Traditional Data Processing
- Distributed Processing
- Statistical Analysis
- Types of Machine Learning Analysis
- Data Visualization
Big Data Roles and Responsibilities
- Administrators
- Developers
- Data Analysts
Languages Used for Data Analysis
- R Language
- Why R for Data Analysis?
- Data manipulation, calculation and graphical display
- Python
- Why Python for Data Analysis?
- Manipulating, processing, cleaning, and crunching data
Approaches to Data Analysis
- Statistical Analysis
- Time Series analysis
- Forecasting with Correlation and Regression models
- Inferential Statistics (estimating)
- Descriptive Statistics in Big Data sets (e.g. calculating mean)
- Machine Learning
- Supervised vs unsupervised learning
- Classification and clustering
- Estimating cost of specific methods
- Filtering
- Natural Language Processing
- Processing text
- Understaing meaning of the text
- Automatic text generation
- Sentiment analysis / topic analysis
- Computer Vision
- Acquiring, processing, analyzing, and understanding images
- Reconstructing, interpreting and understanding 3D scenes
- Using image data to make decisions
Big Data Infrastructure
- Data Storage
- Relational databases (SQL)
- MySQL
- Postgres
- Oracle
- Non-relational databases (NoSQL)
- Cassandra
- MongoDB
- Neo4js
- Understanding the nuances
- Hierarchical databases
- Object-oriented databases
- Document-oriented databases
- Graph-oriented databases
- Other
- Relational databases (SQL)
- Distributed Processing
- Hadoop
- HDFS as a distributed filesystem
- MapReduce for distributed processing
- Spark
- All-in-one in-memory cluster computing framework for large-scale data processing
- Structured streaming
- Spark SQL
- Machine Learning libraries: MLlib
- Graph processing with GraphX
- Hadoop
- Scalability
- Public cloud
- AWS, Google, Aliyun, etc.
- Private cloud
- OpenStack, Cloud Foundry, etc.
- Auto-scalability
- Public cloud
Choosing the Right Solution for the Problem
The Future of Big Data
Summary and Next Steps
Requirements
- A general understanding of math
- A general understanding of programming
- A general understanding of databases
Audience
- Developers / programmers
- IT consultants
Delivery Options
Private Group Training
Our identity is rooted in delivering exactly what our clients need.
- Pre-course call with your trainer
- Customisation of the learning experience to achieve your goals -
- Bespoke outlines
- Practical hands-on exercises containing data / scenarios recognisable to the learners
- Training scheduled on a date of your choice
- Delivered online, onsite/classroom or hybrid by experts sharing real world experience
Private Group Prices RRP from €11400 online delivery, based on a group of 2 delegates, €3600 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.
Contact us for an exact quote and to hear our latest promotions
Public Training
Please see our public courses
Testimonials (7)
How big data work, data programs, greater knowledge of how our current world works using data
Ozayr Hussain - Vodacom
Course - A Practical Introduction to Data Analysis and Big Data
The practical side of the training.
Patrick - Vodacom PTy Ltd
Course - A Practical Introduction to Data Analysis and Big Data
Interactive topics and the style used by the lecture to simplified the topics for the students
Miran Saeed - Sulaymaniyah Asayish Agency
Course - A Practical Introduction to Data Analysis and Big Data
the trainer and his ability to lecture
ibrahim hamakarim - Sulaymaniyah Asayish Agency
Course - A Practical Introduction to Data Analysis and Big Data
Practical exercises
JOEL CHIGADA - University of the Western Cape
Course - A Practical Introduction to Data Analysis and Big Data
R programming
Osden Jokonya - University of the Western Cape
Course - A Practical Introduction to Data Analysis and Big Data
Overall the Content was good.