Course Outline

Introduction

  • Chainer vs Caffe vs Torch
  • Overview of Chainer features and components

Getting Started

  • Understanding the trainer structure
  • Installing Chainer, CuPy, and NumPy
  • Defining functions on variables

Training Neural Networks in Chainer

  • Constructing a computational graph
  • Running MNIST dataset examples
  • Updating parameters using an optimizer
  • Processing images to evaluate results

Working with GPUs in Chainer

  • Implementing recurrent neural networks
  • Using multiple GPUs for parallelization

Implementing Other Neural Network Models

  • Defining RNN models and running examples
  • Generating images with Deep Convolutional GAN
  • Running Reinforcement Learning examples

Troubleshooting

Summary and Conclusion

Requirements

  • An understanding of artificial neural networks
  • Familiarity with deep learning frameworks (Caffe, Torch, etc.)
  • Python programming experience

Audience

  • AI Researchers
  • Developers
 14 Hours

Delivery Options

Private Group Training

Our identity is rooted in delivering exactly what our clients need.

  • Pre-course call with your trainer
  • Customisation of the learning experience to achieve your goals -
    • Bespoke outlines
    • Practical hands-on exercises containing data / scenarios recognisable to the learners
  • Training scheduled on a date of your choice
  • Delivered online, onsite/classroom or hybrid by experts sharing real world experience

Private Group Prices RRP from €4560 online delivery, based on a group of 2 delegates, €1440 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.

Contact us for an exact quote and to hear our latest promotions


Public Training

Please see our public courses

Testimonials (5)

Provisional Upcoming Courses (Contact Us For More Information)

Related Categories