Course Outline

Big Data Overview:

  • What is Big Data
  • Why Big Data is gaining popularity
  • Big Data Case Studies
  • Big Data Characteristics
  • Solutions to work on Big Data.

Hadoop & Its components:

  • What is Hadoop and what are its components.
  • Hadoop Architecture and its characteristics of Data it can handle /Process.
  • Brief on Hadoop History, companies using it and why they have started using it.
  • Hadoop Frame work & its components- explained in detail.
  • What is HDFS and Reads -Writes to Hadoop Distributed File System.
  • How to Setup Hadoop Cluster in different modes- Stand- alone/Pseudo/Multi Node cluster.

(This includes setting up a Hadoop cluster in VirtualBox/KVM/VMware, Network configurations that need to be carefully looked into, running Hadoop Daemons and testing the cluster).

  • What is Map Reduce frame work and how it works.
  • Running Map Reduce jobs on Hadoop cluster.
  • Understanding Replication , Mirroring and Rack awareness in context of Hadoop clusters.

Hadoop Cluster Planning:

  • How to plan your hadoop cluster.
  • Understanding hardware-software to plan your hadoop cluster.
  • Understanding workloads and planning cluster to avoid failures and perform optimum.

What is MapR and why MapR :

  • Overview of MapR and its architecture.
  • Understanding & working of MapR Control System, MapR Volumes , snapshots & Mirrors.
  • Planning a cluster in context of MapR.
  • Comparison of MapR with other distributions and Apache Hadoop.
  • MapR installation and cluster deployment.

Cluster Setup & Administration:

  • Managing services, nodes ,snapshots, mirror volumes and remote clusters.
  • Understanding and managing Nodes.
  • Understanding of Hadoop components, Installing Hadoop components alongside MapR Services.
  • Accessing Data on cluster including via NFS Managing services & nodes.
  • Managing data by using volumes, managing users and groups, managing & assigning roles to nodes, commissioning decommissioning of nodes, cluster administration and performance monitoring, configuring/ analyzing and monitoring metrics to monitor performance, configuring and administering MapR security.
  • Understanding and working with M7- Native storage for MapR tables.
  • Cluster configuration and tuning for optimum performance.

Cluster upgrade and integration with other setups:

  • Upgrading software version of MapR and types of upgrade.
  • Configuring Mapr cluster to access HDFS cluster.
  • Setting up MapR cluster on Amazon Elastic Mapreduce.

All the above topics include Demonstrations and practice sessions for learners to have hands on experience of the technology.

Requirements

  • Basic knowledge of Linux FS
  • Basic Java
  • Knowledge of Apache Hadoop (recommended)
 28 Hours

Delivery Options

Private Group Training

Our identity is rooted in delivering exactly what our clients need.

  • Pre-course call with your trainer
  • Customisation of the learning experience to achieve your goals -
    • Bespoke outlines
    • Practical hands-on exercises containing data / scenarios recognisable to the learners
  • Training scheduled on a date of your choice
  • Delivered online, onsite/classroom or hybrid by experts sharing real world experience

Private Group Prices RRP from €9120 online delivery, based on a group of 2 delegates, €2880 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.

Contact us for an exact quote and to hear our latest promotions


Public Training

Please see our public courses

Testimonials (1)

Provisional Upcoming Courses (Contact Us For More Information)

Related Categories