Course Outline
Introduction
- Kubeflow on AWS vs on-premise vs on other public cloud providers
Overview of Kubeflow Features and Architecture
Activating an AWS Account
Preparing and Launching GPU-enabled AWS Instances
Setting up User Roles and Permissions
Preparing the Build Environment
Selecting a TensorFlow Model and Dataset
Packaging Code and Frameworks into a Docker Image
Setting up a Kubernetes Cluster Using EKS
Staging the Training and Validation Data
Configuring Kubeflow Pipelines
Launching a Training Job using Kubeflow in EKS
Visualizing the Training Job in Runtime
Cleaning up After the Job Completes
Troubleshooting
Summary and Conclusion
Requirements
- An understanding of machine learning concepts.
- Knowledge of cloud computing concepts.
- A general understanding of containers (Docker) and orchestration (Kubernetes).
- Some Python programming experience is helpful.
- Experience working with a command line.
Audience
- Data science engineers.
- DevOps engineers interesting in machine learning model deployment.
- Infrastructure engineers interesting in machine learning model deployment.
- Software engineers wishing to integrate and deploy machine learning features with their application.
Delivery Options
Private Group Training
Our identity is rooted in delivering exactly what our clients need.
- Pre-course call with your trainer
- Customisation of the learning experience to achieve your goals -
- Bespoke outlines
- Practical hands-on exercises containing data / scenarios recognisable to the learners
- Training scheduled on a date of your choice
- Delivered online, onsite/classroom or hybrid by experts sharing real world experience
Private Group Prices RRP from €9120 online delivery, based on a group of 2 delegates, €2880 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.
Contact us for an exact quote and to hear our latest promotions
Public Training
Please see our public courses
Testimonials (3)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Course - MLflow
All good, nothing to improve
Ievgen Vinchyk - GE Medical Systems Polska Sp. Z O.O.
Course - AWS Lambda for Developers
IOT applications