Course Outline
Introduction to Large Language Models (LLMs)
- Overview of LLMs
- Definition and significance
- Applications in AI today
Transformer Architecture
- What is a transformer and how does it work?
- Main components and features
- Embedding and positional encoding
- Multi-head attention
- Feed-forward neural network
- Normalization and residual connections
Transformer Models
- Self-attention mechanism
- Encoder-decoder architecture
- Positional embeddings
- BERT (Bidirectional Encoder Representations from Transformers)
- GPT (Generative Pretrained Transformer)
Performance Optimization and Pitfalls
- Context length
- Mamba and state-space models
- Flash attention
- Sparse transformers
- Vision transformers
- Importance of quantization
Improving Transformers
- Retrieval augmented text generation
- Mixture of models
- Tree of thoughts
Fine-Tuning
- Theory of low-rank adaptation
- Fine-Tuning with QLora
Scaling Laws and Optimization in LLMs
- Importance of scaling laws for LLMs
- Data and model size scaling
- Computational scaling
- Parameter efficiency scaling
Optimization
- Relationship between model size, data size, compute budget, and inference requirements
- Optimizing performance and efficiency of LLMs
- Best practices and tools for training and fine-tuning LLMs
Training and Fine-Tuning LLMs
- Steps and challenges of training LLMs from scratch
- Data acquisition and maintenance
- Large-scale data, CPU, and memory requirements
- Optimization challenges
- Landscape of open-source LLMs
Fundamentals of Reinforcement Learning (RL)
- Introduction to Reinforcement Learning
- Learning through positive reinforcement
- Definition and core concepts
- Markov Decision Process (MDP)
- Dynamic programming
- Monte Carlo methods
- Temporal Difference Learning
Deep Reinforcement Learning
- Deep Q-Networks (DQN)
- Proximal Policy Optimization (PPO)
- Elements of Reinforcement Learning
Integration of LLMs and Reinforcement Learning
- Combining LLMs with Reinforcement Learning
- How RL is used in LLMs
- Reinforcement Learning with Human Feedback (RLHF)
- Alternatives to RLHF
Case Studies and Applications
- Real-world applications
- Success stories and challenges
Advanced Topics
- Advanced techniques
- Advanced optimization methods
- Cutting-edge research and developments
Summary and Next Steps
Requirements
- Basic understanding of Machine Learning
Audience
- Data scientists
- Software engineers
Delivery Options
Private Group Training
Our identity is rooted in delivering exactly what our clients need.
- Pre-course call with your trainer
- Customisation of the learning experience to achieve your goals -
- Bespoke outlines
- Practical hands-on exercises containing data / scenarios recognisable to the learners
- Training scheduled on a date of your choice
- Delivered online, onsite/classroom or hybrid by experts sharing real world experience
Private Group Prices RRP from €6840 online delivery, based on a group of 2 delegates, €2160 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.
Contact us for an exact quote and to hear our latest promotions
Public Training
Please see our public courses